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Abstract

Recognizing ingredients for a given dish image is at the core
of automatic dietary assessment, attracting increasing atten-
tion from both industry and academia. Nevertheless, the task
is challenging due to the difficulty of collecting and label-
ing sufficient training data. On one hand, there are hundred
thousands of food ingredients in the world, ranging from the
common to rare. Collecting training samples for all of the
ingredient categories is difficult. On the other hand, as the
ingredient appearances exhibit huge visual variance during
the food preparation, it requires to collect the training sam-
ples under different cooking and cutting methods for robust
recognition. Since obtaining sufficient fully annotated train-
ing data is not easy, a more practical way of scaling up the
recognition is to develop models that are capable of recog-
nizing unseen ingredients. Therefore, in this paper, we target
the problem of ingredient recognition with zero training sam-
ples. More specifically, we introduce multi-relational GCN
(graph convolutional network) that integrates ingredient hi-
erarchy, attribute as well as co-occurrence for zero-shot in-
gredient recognition. Extensive experiments on both Chinese
and Japanese food datasets are performed to demonstrate the
superior performance of multi-relational GCN and shed light
on zero-shot ingredients recognition.

Introduction
Automatically constructing a food diary that tracks the in-
gredients consumed can facilitate the estimation of nutrition
facts, which is crucial to various health relevant applications.
Existing works (Kitamura, Yamasaki, and Aizawa 2008;
Meyers et al. 2015) estimate the nutrients from the food
image uploaded by the user. A classifier is first trained to
recognize the category of the food in the image. Then, the
nutrients are estimated based on the food composition ta-
ble for each food category. These methods are only feasible
for restaurant food with relatively fixed ingredient composi-
tion (Chen and Ngo 2016). However, for home-made food,
as they usually do not have standardized cooking methods,
food presentation, and ingredients composition, a clear map-
ping from the food category to its composing ingredients
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Figure 1: Given a food image (shown in (a)) that contains
unseen ingredients, this work proposes to leverage multi-
ple relations among ingredients (b) for unseen ingredients
recognition.

often does not exist. This motivates the need to directly rec-
ognize ingredients from the food image. Moreover, training
a model that is able to recognize all the dishes is not realis-
tic, as there are endless kinds of food categories worldwide
(Bolaños, Ferrà, and Radeva 2017). Recognizing ingredients
is more feasible in terms of scale, as the number of ingredi-
ents is much less than the number of the food category.

Existing works on ingredient recognition mainly focus on
recognizing a relatively narrow set of ingredients, ranging
from 93 to 1,276 categories (Bolaños, Ferrà, and Radeva
2017; Chen and Ngo 2016; Chen, Ngo, and Chua 2017;
Zhang, Lu, and Zhang 2016). The major obstacle for large-
scale ingredient recognition is the lack of sufficient train-
ing samples. Collecting dish images that cover all ingredient
categories is difficult, not mentioning the efforts devoted to
label the ingredient composition for each image. Besides,
for robust recognition, it requires to collect training samples
under different cooking and cutting conditions, since the ap-
pearances of ingredients depend heavily on the way they are
processed in cooking. To overcome this data sparsity issue,
a more practical way is to endow the model with the ability
to recognize ingredient which has zero training sample.

This paper studies the problem of zero-shot ingredient
recognition. The key to dealing with zero-shot recognition
problem is to transfer the knowledge obtained from familiar
categories to unfamiliar ones. The knowledge transfer is ei-



ther based on implicit knowledge representations (Frome et
al. 2013; Norouzi et al. 2013), i.e. semantic embedding, or
explicit knowledge bases which represents the knowledge
as rules or relationships between objects (Misra, Gupta, and
Hebert 2017). Recently, Wang et al. (2018) distill both im-
plicit knowledge representations and explicit relationships
(in the form of knowledge graph) for zero-shot recogni-
tion, which achieves state-of-the-art performance. Similar to
Wang et al. (2018), we also utilize both implicit and explicit
knowledge for zero-shot ingredient recognition.

However, compared with other zero-shot tasks, knowl-
edge transfer for zero-shot ingredient recognition poses a
unique challenge: relations among ingredients are compli-
cated and cannot be modeled by a single-relational knowl-
edge graph. The relations among ingredients can be charac-
terised in multiple aspects. For example, some ingredients
share similar visual appearance as they belong to the same
hierarchy (e.g., spinach and water spinach). Some ingredi-
ents are correlated as they share the same cutting or cook-
ing methods (e.g., diced tomato and diced red bell pepper).
Other ingredients may be associated because they often co-
occur with each other in a recipe (e.g., corn and carrot).
When building a knowledge graph to transfer knowledge
from familiar ingredients to unseen ones, each type of re-
lation actually carries diverse semantic information. There-
fore, a single-relational knowledge graph cannot differenti-
ate the different effects towards predicting unseen ingredi-
ents brought by different relations.

To address this, we define a multiple-relational graph to
capture multiple types of relations among ingredients, such
as ingredient attribute (i.e., color or shape), ingredient hier-
archy, and ingredient co-occurrence (as shown in Figure 1).
We then propose a multi-relational graph convolutional net-
work, termed mRGCN, to efficiently encode the multiple-
relational graph so that the knowledge can be better trans-
ferred to unseen ingredients in zero-shot learning. Our major
contributions can be summarized as follows:

• As the first to study the problem of zero-shot ingredient
recognition, we construct a multi-relational knowledge
graph that models three types of relations between ingre-
dients that we find are crucial for this problem.

• We develop a new model namely mRGCN, which effi-
ciently exploits three types of relations among ingredi-
ents, for zero-shot ingredient recognition.

• We explore several ways of coupling different types of
relations in mRGCN, and verify the effectiveness of
mRGCN for zero-shot ingredient recognition on two real-
world datasets.

Related Work
Ingredient Recognition
Ingredient recognition receives much less attention than
food categorization (Bolaños, Ferrà, and Radeva 2017; Chen
and Ngo 2016; Chen, Ngo, and Chua 2017; Yang et al. 2010;
Zhang, Lu, and Zhang 2016). Comparing with food cate-
gorization, ingredient recognition is much more challenging
as ingredients are small in size and exhibit larger variances

in appearance. Recent works on ingredient recognition are
mostly based on deep models (Bolaños, Ferrà, and Radeva
2017; Chen and Ngo 2016; Chen, Ngo, and Chua 2017;
Zhang, Lu, and Zhang 2016). For example, in (Chen and
Ngo 2016), a VGG multi-task learning framework is pro-
posed to simultaneously recognize food categories and in-
gredient labels. Similarly, (Zhang, Lu, and Zhang 2016) fur-
ther incorporates cooking attribute recognition into multi-
task learning. (Chen, Ngo, and Chua 2017) studies the in-
terplay of ingredients, cutting and cooking attributes with
a multi-task deep model. In (Min et al. 2017), multimodal
deep Boltzmann machine is applied for ingredient recog-
nition and food image retrieval. Segmentation of food into
ingredients has also been explored (Meyers et al. 2015) by
convolutional network and conditional random field (CRF).
Nevertheless, existing efforts all devote to recognizing a pre-
defined set of ingredients, zero-shot ingredient recognition
has not been studied yet.

Multi-label Zero-shot Learning

Multi-label zero-shot learning (Mensink, Gavves, and Snoek
2014)(Lee et al. 2018) aims to predict the unseen labels
that are not defined during the training process. Existing
works on multi-label learning, such as (Chen et al. 2019)
and (Marino, Salakhutdinov, and Gupta 2016), cannot be di-
rectly applied to multi-label zero-shot learning problems, as
such methods assume all the labels are seen during the train-
ing and lack the ability to generalize to unseen class labels.
Compared with single-label zero-shot learning, multi-label
zero-shot learning receives less attention. Different with
single-label zero-shot learning, which either relies on se-
mantic attributes (Lampert, Nickisch, and Harmeling 2009;
2014)(Fu et al. 2012; Liu, Kuipers, and Savarese 2011) or
semantic embeddings (Chen et al. 2018; Frome et al. 2013;
Fu et al. 2015; Romera-Paredes and Torr 2015; Xian et al.
2016; Socher et al. 2013; Kodirov, Xiang, and Gong 2017;
Zhang and Saligrama 2016), multi-label zero-shot learning
usually relies on the relationships between seen labels and
unseen labels (Mensink, Gavves, and Snoek 2014; Lee et
al. 2018). One early model is COSTA (Mensink, Gavves,
and Snoek 2014) which estimates the classifiers for new la-
bels as the weighted combination of seen classes, leverag-
ing their co-occurrence statistics. Another work is (Lee et
al. 2018) which performs multi-label zero-shot learning on
a structured knowledge graph with three types of relations
among labels, namely “super-subordinate (ISA relation)”
compiled from WordNet and “positive relation” as well as
“negative relation” obtained from label similarities. Then
Graph Search Neural Netwok (GSNN) (Marino, Salakhut-
dinov, and Gupta 2016) is applied to propagate the prob-
abilities from seen labels to unseen labels. Our work dif-
fers from the aforementioned works in two aspects. First,
apart from co-occurrence and ISA relation, the relation of
attribute sharing is also considered in this work. Second, a
novel mRGCN is proposed to model the interaction among
different ingredient relations.
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Figure 2: Framework overview. During training, the proposed framework contains two major modules: a multi-label deep
convolutional neural network for known ingredient recognition and a multi-relational graph convolutional neural network
(mRGCN) for unseen ingredient classifier prediction. The learned ingredient classifiers extracted from multi-label CNN are
used as ground-truth classifiers, supervising the learning of mRGCN. Thus, the knowledge learned from known ingredient will
propagate through mRGCN to generate the classifiers for unseen ingredients. During testing, for a given image, the proposed
framework will predict the unseen ingredient with the estimated unseen ingredient classifier.

Graph Convolutional Neural Network
Our work is also related to Graph Neural Networks (GNNs).
In the literature, GNN is introduced to learn the repre-
sentations for irregular grid data, such as graph and net-
work data (Bruna et al. 2013; Defferrard, Bresson, and
Vandergheynst 2016; Hamilton, Ying, and Leskovec 2017;
Henaff, Bruna, and LeCun 2015; Kipf and Welling 2017).
In (Kipf and Welling 2017), Graph Convolutional Network
(GCN) is proposed to learn the node representations for
semi-supervised entity classification. In (Velickovic et al.
2018), they propose graph attention network (GAT) to intro-
duce the attention mechanism in GCN. Nevertheless, these
models mostly focus on modeling single-relational graph.
As there are different relation types among ingredients, we
design a multi-relational graph convolutional network in this
work for zero-shot ingredient recognition.

Recently, some GNNs are proposed to learn representa-
tions of multi-relational graphs. In (Kawamae 2019), to en-
code a multi-relational graph, separate representations for
nodes and edges are learnt via jointly optimizing on two
tasks: link structure prediction and node attributes preser-
vation. In (Nie, Sun, and Yu 2019), local graphs are first
sampled from multi-hop neighboring entities and relations
of a given entity. Afterwards, localized graph convolutions
are employed to generate node and relation embeddings.
Mao et al., (2019) proposed ImageGCN for multi-relational
image modeling, which models the image-level relations to
generate more informative image representations. However,
different relation edges are equally-weighted during prop-
agation in above methods, which may fail to capture vari-
ous interactions between different relations. To address this,
our model introduces the attention mechanism into GCN,
such that various relations can contribute differently during
graph propagation. Although a similar idea was proposed

in (Shang et al. 2018), in which they jointly learn attention
weights and node features in graph convolution, their model
are specially designed for chemical datasets, which have dif-
ferent attributes and relations with the food domain.

Methodology
The goal of this work is to leverage multiple relations
among ingredients for unseen ingredient recognition. Figure
2 presents an overview of the proposed framework, which
is composed of two modules in training: a multi-label deep
convolutional neural network (DCNN) for known ingredi-
ent classifier learning and a multi-relational graph convolu-
tional network (mRGCN) for unseen ingredient prediction.
For ingredient with training samples, the multi-label DCNN
is conducted to learn the classifiers. The learned classifiers
are further viewed as ground-truth classifiers, supervising
the learning of mRGCN. mRGCN is performed on the graph
which includes both known and unknown ingredients. The
input to mRGCN are ingredient word embeddings as well
as multiple ingredients relation graphs, and the output of
mRGCN are the predicted classifiers of each ingredient. By
minimizing the L2 distance between the predicted classifiers
and the ground-truth classifiers, the knowledge learned from
known ingredients will propagate to unknown ingredients
and enable the zero-shot ingredient recognition. Next, we
will have a detailed introduction on the proposed framework.

Multi-Label CNN
Given a set of food images X where each image is la-
beled with its ingredient composition, and the ingredient set
is denoted as M. For |M| ingredients, we train a multi-
label DCNN to learn the ingredient classifiers. The multi-
label DCNN is built upon ResNet-50 (He et al. 2016) by
replacing the softmax loss with sigmoid cross-entropy loss



since ingredient recognition is a multi-label learning prob-
lem. The convolutional layers can be considered as the fea-
ture learning layers, while the last fully connected layer as
the classifier layer. We denote the learned classifier weight as
W ,W ∈ Rm×d, where m is the number of ingredient cate-
gories and d is the dimension of the image features. For the
ith ingredient inM, the learned classifier weight Wi ∈ Rd

can be considered as a binary classifier, predicting whether
the image contains the ith ingredient or not. Then the learned
binary classifiers W will be used as ground-truth classifiers
supervising the learning of multi-relational Graph Convolu-
tioanl Network.

Multi-relational graph convolutional network
Given a food image x that contains unknown ingredient c
(i.e., c /∈ M, x /∈ X ), our goal is to leverage the relations
of ingredient c with the known ingredients in X to gener-
ate the classifier Wc ∈ Rd of ingredient c. In this work,
we leverage multi-relational Graph Convolutioanl Network
to model various relations among ingredients and propagate
the knowledge learned from known ingredients to unknown
ingredients. Specifically, we consider three kinds of relations
among ingredients, ingredient hierarchy, ingredient attribute
as well as ingredient co-occurrence, as shown in Figure 2.
• Ingredient Hierarchy. This typically introduces the “is

a” relations among ingredients, suggesting the knowledge
between parents and children nodes. The ingredient hier-
archy is manually constructed according to retail websites
and recipe websites.

• Ingredient Attribute. We link the ingredients that share
the same attributes, such as color, shape or cooking meth-
ods, exhibiting the attribute-aware knowledge among in-
gredients. In this work, we consider 19 attributes in to-
tal, including 5 Common colors (“white”, “black”, “red”,
“green” and “yellow”), 8 Shape attributes (“slice”, “dice”,
“minced”, “powder“, “roll”, “trunk”, “shred”, “julienne”)
and 6 cooking methods (i.e., “deep-fry”, “dry”, “fry”,
“steam”, “boil”, “pickle”) that will have significant affects
on the ingredient appearances.

• Ingredient Co-occurrence. The motivation is that certain
groups of ingredients co-occur more often while some in-
gredients are likely exclusive of each other. Such kinds of
co-occurrence relation might help refine the recognition
results of unseen ingredients. Therefore, we also consider
the co-occurrence relations among ingredients.
We introduce multi-relational graph neural network

(mRGCN) to model these three kinds of relations for graph
propagation. Denote N as the whole ingredient set, which
includes both seen ingredients M and unseen ingredients
C, N = M ∪ C. Denote Ai,Ai ∈ Rn×n as the adjacent
matrix for ith relation over N , i ∈ {1, 2, 3}. For graph con-
volutional neural network which only considers one type of
relation, the graph propagation is performed through the fol-
lowing equation:

H(l+1) = σ(ÂH(l)Θ(l)), (1)

where Â ∈ Rn×n is the normalized version of binary ad-
jacent matrix A, H(l) represents the activations in the l-

th layer, and Θ ∈ RC×F denotes the trainable parame-
ters; σ(·) is the nonlinear activation function. When l = 0,
H(0) ∈ Rn×k is the input node features with the dimension-
ality of k. Similar to (Wang, Ye, and Gupta 2018), we use the
word embeddings of ingredients as the input of GCN.

The most straightforward way to extend the single rela-
tional graph convolutional network to multi-relational graph
convolutional network is to sum the graph convolution out-
puts from different relation adjacent matrices together, as:

H(l+1) = σ(

3∑
i=1

ÂiH(l)Θ(l,i)), (2)

where Θ(l,i) is the weight matrix for i-th relation.
Another way to aggregate different relations is concate-

nating graph convolution outputs from different relation ad-
jacent matrices, which is formulated as:

H(l+1) = σ(Concat3i=1Â
iH(lΘ(l,i)). (3)

In this way, different kinds of relations will be included
during the knowledge propagation process. As the GCN
is trained to predict the classifier weights of ingredients,
the number of output channel for the last convolution layer
should be the same with the dimension of image features.
Denote Ŵ ∈ Rn×d as the predicted classifier weights for
ingredient, which is the output of GCN. The loss function
for training GCN is the Mean Square Error between the pre-
dicted classifier weights and ground-truth classifier weights
of known ingredients obtained in Section . Thus, we have

L =
1

md

m∑
i=1

d∑
j=1

(Ŵi,j −Wi,j)
2, (4)

where m is the number of known ingredients. By using the
ground-truth classifier weights of known ingredients to su-
pervise the training of GCN, the knowledge of known ingre-
dients can be propagated to unknown ingredients.

Attentive Multi-relational graph convolutional
network
Intuitively, various relations should contribute differently to-
wards knowledge propagation for zero-shot learning. How-
ever, neither directly summing the graph convolution out-
puts from different relation graphs nor concatenating them
can capture the difference of interactions among different
relations. In order to deal with interactions among differ-
ent relations, we introduce the attention mechanism to learn
different weights for different relations during the training
of multi-relational graph convolutional network. Similar to
(Ma et al. 2018), we also introduce relation specific repre-
sentation that considers both within relation interactions and
across relation interactions during graph propagation. De-
note H(l+1,i) as the relation specific representation for i-th
relation, we have:

H(l+1,i) = σ(

within-relation interactions︷ ︸︸ ︷
ÂiH(l)Θ(l,i) +

3∑
j 6=i

αi,jH
(l)Θ(l,j)

︸ ︷︷ ︸
across-relation interactions

),

(5)



where ÂiH(l)Θ(l,i) presents the updated representation
which aggregates the knowledge from the ingredients con-
nected with i-th relation, reflecting the inner-relation in-
teractions; meanwhile, as one relation might influence the
message-passing or information propagation process of the
other relations, we formulate such a cross-relation interac-
tion as αi,jH

(l)Θ(l,j). For ith relation, the representation of
across-relation interactions is the weighted sum of the pro-
jected dimension specific representation. Wherein, the atten-
tive weight αi,j models the importance of relation i to re-
lation j, and

∑3
i=1 αi,j = 1. We formulate such attention

mechanism through the following bilinear function:

αi,j =
exp(tr(W T

i MWj))∑3
i=1 exp(tr(W

T
i MWj))

(6)

where tr(.) is the trace of a matrix and M is the param-
eters to be learned in the bilinear function. Softmax is ap-
plied to normalize the attention scores. The motivation of
designing such kind of attention mechanism is based on the
observation that if two relations are highly similar, the two
projection matrices should also be highly related. Therefore,
the attention weights should be learned based on these pro-
jection matrices. To this end, a bilinear function is used to
model the relations between projection matrices and learn
the attention weights.

Having established the relation specific representations,
we concatenate them together as the final updated represen-
tations, as:

H(l+1) = Concat3i=1H
(l+1,i). (7)

Implementation details
As illustrated in (Kampffmeyer et al. 2018), the aim of GCN
is to exchange information between nodes in the graph in
regression setting. However, stacking multiple GCN layers
easily leads to information dilution and might hinder ac-
curate regression. Therefore, distinct from (Wang, Ye, and
Gupta 2018) which uses 6 GCN layers, our mRGCN is com-
posed of 4 convolutional layers with output channel numbers
as 2048-1024-512-D. Since we use ResNet for image fea-
ture learning and ground-truth classifier learning, D is 2048
in our settings. Similar to (Wang, Ye, and Gupta 2018), we
apply LeakyReLU (Maas, Hannun, and Ng 2013) with the
negative slope of 0.2 as the activation function and perform
L2 normalization on the output of mRGCN to regularize the
output into similar magnitudes.

To obtain the word embeddings for GCN inputs, we use
word2vec (Mikolov et al. 2013) model trained on the cook-
ing instructions of Recipe 1M (Salvador et al. 2017), which
leads to 300-d vectors. Similar to (Wang, Ye, and Gupta
2018), for the classes whose names contain multiple words,
we match all the words in the trained model and find their
embeddings. By averaging these word embeddings, we ob-
tain the ingredient word embeddings.

Experiments
Dataset
The performances are evaluated on two datasets, a Chinese
food dataset VIREO Food 172 (Chen and Ngo 2016) and a

Japanese food dataset UEC Food-100 (Matsuda and Yanai
2012). VIREO Food-172 covers 172 most common Chi-
nese dishes, being labeled with 353 ingredients. In total, this
dataset contains 110,241 food images. We split 60% as the
training set, 30% as the test set and the remaining for vali-
dation. As the appearance of ingredients depends heavily on
the applied cooking and cutting methods, Chen et al. (Chen
and Ngo 2016) integrate the cooking and cutting methods
into ingredient labels. Therefore, there are ingredient labels
like “sliced boiled egg”, “minced garlic”. We link ingre-
dients that share the same color, shape or cooking meth-
ods to generate the ingredient attribute sharing graph. For
hierarchy, we first compile different ingredient hierarchies
from recipe websites such as “Go cooking”1 and online gro-
ceries shopping website such as “Redmart”2, and manually
merge them in order to form a complete ingredient hier-
archy. Then we map the ingredients in VIREO Food-172
dataset to our ingredient hierarchy to obtain the “is a” re-
lation of 353 ingredients. Including the inner nodes, there
are 519 nodes in total. The co-occurrence relation among
ingredient is built according to the co-occurrence statistics
of the training data. If the co-occurrence value between two
ingredients larger than a given threshold, then there will be
an edge linking them. Note that the co-occurrence statistics
can also be obtained from external recipe database. UEC
Food-100 contains 14,136 food images from 100 Japanese
food categories. Chen et al. (Chen and Ngo 2016) labeled
this dataset with 190 ingredient labels. We merge the dupli-
cate ingredient labels and finally get 174 labels. Similar to
VIREO Food-172 dataset, we build the ingredient attribute
sharing relation, ingredient co-occurrence relation, as well
as the ingredient hierarchy. Including the inner nodes of the
ingredient hierarchy, we have 268 nodes in total. Table 1
shows the statistic of these two datasets.

Table 1: Dataset statistics of VIREO Food-172 and UEC
Food-100.

Dataset Train/Test Edge type Edge #

VIREO Food-172 283/70
“is a” 1,175
“share attri.” 1,092
“co-occur.” 1,150

UEC Food-100 139/37
“is a” 559
“share attri.” 424
“co-occur.” 507

Experimental settings
We randomly select 20% of the nodes in VIREO Food-172
and UEC Food-100 as unseen ingredients for evaluation. In
total, we sample 70 and 37 ingredients as test unseen ingre-
dient sets on VIREO Food-172 and UEC Food-100, respec-
tively. During the training, we drop the images that contain
any of the 20% selected ingredients. To obtain the ground-
truth classifiers, we fine-tune ResNet-50 which is pre-trained
with ImageNet on VIREO Food-172 and UEC Food-100 for

1www.xiachufang.com
2www.redmart.com



Table 2: Effect of different relation graphs to zero-shot in-
gredient recognition.

Dataset Model Hit@k (%)
1 2 5 10 20

VIREO Food-172

RGCNH 8.0 12.3 17.5 23.1 28.8
RGCNA 1.7 1.8 2.6 4.4 11.2
RGCNC 2.8 3.6 6.2 10.5 15.8

mRGCNH&A 3.6 12.0 21.9 23.4 29.0
mRGCNA&C 21.5 26.8 33.2 42.5 47.9
mRGCNH&C 21.9 24.3 31.7 37.0 44.4

mRGCN 23.5 28.5 37.7 43.6 48.8

UEC Food-100

RGCNH 3.1 5.0 5.7 16.5 21.7
RGCNA 1.3 1.6 3.1 8.1 16.5
RGCNC 1.5 1.5 1.8 3.1 4.5

mRGCNH&A 3.6 3.6 4.6 15.7 18.9
mRGCNA&C 1.5 17.4 20.6 22.6 25.5
mRGCNH&C 1.5 1.6 2.5 5.2 20.9

mRGCN 17.0 20.3 22.4 22.4 36.7

multi-label ingredient recognition. For training the mRGCN,
we adopt Adam (Kingma and Ba 2014) optimizer and the
learning rate is set as 0.001. We train the mRGCN for 500
epochs for every experiment and report the performance of
the model which attains the best result on validation set.

The evaluation metric we use is the Top-K hit ratio, which
measures the percentage of hitting the ground-truth labels
among the top-k positions of predictions. Following (Wang,
Ye, and Gupta 2018), we include both training and the pre-
dicted classifiers during the testing. Different from previ-
ous work on zero-shot recognition, our zero-shot ingredi-
ent recognition is a multi-label recognition problem, and the
testing image may contain both known and unknown ingre-
dients. For fair evaluation, we skip the predictions of known
ingredients which appear in ground-truth labels when calcu-
lating the top-k hit rate.

Experimental results
Effect of Different Relation Graphs As the modeling of
different ingredient relations is at the core of mRGCN, we
investigate its impact and get deep insights on the knowledge
propagation among classifiers. We use RGCNH, RGCNA,
and RGCNC to indicate the model trained only with Hier-
archy, Attribute, and Co-occurrence relations, respectively;
moreover, mRGCNH&A shows that the Hierarchy and At-
tribute relations are used together, and similar notations for
others. We summarize the results in Table 2.

By analyzing the performance on Tables 2, we have the
following observations: (1) Among models using an indi-
vidual relation, RGCNH consistently achieves the best per-
formance, indicating that the “is a” relation is of more im-
portance to transfer knowledge between classifiers than the
others; (2) When the co-occurrence relation are simultane-
ously considered with another relations, the improvement
can be achieved compared with the models with single rela-
tions. It is reasonable since the co-occurrence relation is ca-
pable of revealing the statistical patterns or association rules
that are hard to exhibit in other relations. We hence attribute
such improvements to the complementary relationships be-
tween the co-occurrence and hierarchy/attribute graphs; (3)
It is interesting that mRGCNH&A performs poor on VIREO
dataset. This might be caused by the cross-relation inter-
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Figure 3: Qualitative results on Vireo Food-172. For each
image, the top 5 zero-shot predictions on unseen classes of
our mRGCN with all the three relation types and single rela-
tion GCN with ingredient hierarchy are visualized. Predic-
tions are ordered in decreasing score, with correct predic-
tions in bold.

action, which could assign high attentive weights since the
hierarchy and attribute relations have much overlapped and
homogeneous knowledge. We leave such exploration as our
future work; And (4) mRGCN substantially outperforms
the variants, verifying the rationality of multiple relation
modeling.By exploiting the message-passing mechanism of
GNNs, mRGCN is capable of fusing heterogeneous infor-
mation together and propagating knowledge from the seen
ingredients to the unseen.

To get deep insights on how different relations influence
the recognition, we visualize the top-5 predictions on unseen
classes for three images, as Figure 3 illustrates. In particu-
lar, we show the results of mRGCN with all three relations
and mRGCNH. As we can see, mRGCNH tends to gener-
ate higher predictions for the unseen ingredients under the
same parents with seen ingredients. For example, for the
first image, mRGCNH predicts “shredded pickled bamboo
shoot” in the most salient place, since such ingredient and
the seen ingredient “hot pickled mustard” belong to the same
subtree, thus being assigned with higher prediction. More-
over, it ranks “Fern root noodles” and “Macaroni” in top five
positions, since they share the same parent node “noodles”
with the seen ingredient “sweet potato starch noodles”. As
a result, the unseen ground-truth label “green vegetables”
are not in top-5 predictions. On the other hand, as “green
vegetables” usually co-occurs with noodles, such as “sweet
potato starch noodles”, our mRGCN which also utilizes co-
occurrence relation is able to rank “green vegetables” at the
salient place. Similar observations can be also found in the
second and third images.

By analyzing the individual performance of each relation
per category, we have the following findings. First, the co-
occurrence relation has an impact on transferring knowl-
edge among the ingredients which usually co-occur with
other seen categories, such as “green vegetables” and “white
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Figure 4: Comparison of the performance between mRGCN
with Attentive mRGCN. The testing are done on both seen
and unseen class.

sesame”. Second, the attribute relation plays a pivotal role
for the ingredients (e.g. “julienne ham”) whose appearances
are determined by their attributes. Moreover, the hierarchy
relation is capable of effectively transferring knowledge for
the ingredients near to the leaf nodes (e.g. “black chicken”),
since their parent nodes provide more discriminative at-
tributes for information propagation.

Effect of Attention Mechanism To explore the effect of
attention mechanism, we consider the variants of mRGCN
that uses different ways to fuse outputs of multiple re-
lations — more specifically, the sum (c.f. Equation (2)),
concatenation (c.f. Equation (3)), and attention (c.f. Equa-
tion (7)) operations, termed as mRGCN-sum, mRGCN-con,
and mRGCN-att, respectively. The results on two datasets
are summarized in Figure 4.

Clearly, mRGCN-con consistently achieves better per-
formance than mRGCN-sum, suggesting that the concate-
nation operation integrates the characteristics of individual
relation graphs in a better way. Furthermore, mRGCN-att
outperforms the other variants by a large margin. In terms
of Hit@10 and Hit@20, it improves around 2% over the
strongest variants on VIREO Food-172; meanwhile, the im-
provements are more than 12% and 6% of Hit@10 and
Hit@20 respectively, on UEC Food-100 dataset. The re-
sults verify that the across-relation interactions in the atten-
tion mechanism works well, hence enables better zero-shot
recognition performance.

Performance Comparison with Baselines We further
compare our mRGCN against different baseline methods,
including ConSE (Norouzi et al. 2013), COSTA(Mensink,
Gavves, and Snoek 2014), Fast0Tag(Zhang, Gong, and Shah
2016), ML-ZSL (Lee et al. 2018) and GCNZ (Wang, Ye,
and Gupta 2018). ConSE (Norouzi et al. 2013) feeds the
test images into ConvNet that is trained only on the training
classes. With the output probabilities, it selects top T predic-
tions and the word embeddings of these classes. It then gen-
erates a new word embedding by averaging the T embed-
dings weighted with the predicted probabilities. Such out-
put embedding is then applied to perform nearest neighbor
search in the word embeddings of testing classes. The top
retrieved classes are selected as the final result. As ingredi-
ent recognition is a multi-label recognition problem, the top
T predictions may contain training classes which are in the
ground-truth label list. We therefore skip those predictions

that are known ingredients and appear in ground-truth labels,
when generate the word embeddings test classes. Similar to
(Wang, Ye, and Gupta 2018), we consider different values
of T for evaluations. COSTA exploits co-occurrences of vi-
sual concepts in images for transferring the knowledge from
seen categories to unseen categories. In this work, the classi-
fiers of unseen classes are estimated with the weighted com-
bination of related classes, using the co-occurrences to de-
fine the weight. Fast0Tag proposes to solve zero-shot image
tagging by estimating the principal direction for an image
with both linear mappings and nonlinear deep neural net-
works. In the estimated principal direction, the word vectors
of relevant tags for a given image rank ahead of the irrel-
evant tags. ML-ZSL(Lee et al. 2018) performs multi-label
zero-shot recognition based on the knowledge graph which
models the super-subordinate, positive relation and negative
relation. GCNZ (Wang, Ye, and Gupta 2018) is one of the
state-of-the-art methods, which shows much better perfor-
mance than ConSE on ImageNet dataset. GCNZ leverages
graph convolutional network to model the class relations for
unseen class prediction. As GCNZ uses WordNet as knowl-
edge graph which contains “is a” relations solely, it is a spe-
cial case of our mRGCN based on hierarchy relations (e.g.
mRGCNH in Section ). There are also some other zero-shot
recognition baselines, such as DeViSE (Frome et al. 2013),
however, most of them are designed for single-label recog-
nition problem, which are not suitable for our task.

We compare our methods with these baselines under two
experimental settings: testing on unseen class and testing
on both seen and unseen class. Table 3 lists the perfor-
mance comparison. ConSE is denoted as ConSE(T) where
T is searched in {1, 2, 5}. From the results, mRGCN yields
the best performance when testing on both unseen classes
and all classes in most cases. When testing on only unseen
classes, our method improves more than 18% over ConSE(5)
and GCNZ in terms of Hit@10; meanwhile, when testing on
all the classes, it consistently outperforms all baseline meth-
ods w.r.t all evaluation metrics, and the improvement can be
as high as 20% compared with GCNZ w.r.t Hit@10. It is
worthwhile mentioning that ML-ZSL, GCNZ as well as our
method performs much better than ConSE in most cases,
suggesting that combining knowledge graph with word em-
beddings could lead to much better results than the methods
with word embeddings only. Besides, ML-ZSL shows better
performance compared with GCNZ and COSTA on both ex-
perimental settings, showing the advantages of introducing
more relations types for zero-shot learning.

Analogously, on UEC Food-100 dataset, mRGCN also
outperforms all baselines on both settings in most cases.
When testing only on unseen class, the accuracy of our at-
tentive mGCN is almost 2 times as that of ConSE in Hit@2
and Hit@5. When testing on both seen and unseen class, our
method improves more than 20% compared with ConSE and
GCNZ in terms of Hit@2 and Hit@5. The results verify that
our attentive mRGCN is effective in modeling different rela-
tion types hence lead to better zero-shot recognition perfor-
mance.



Table 3: Comparison of the performance of our attentive mRGCN with different baselines.

Dataset Model
Settging/Metric Seen & Unseen Unseen

Hit@k (%) Hit@k (%)
1 2 5 10 20 1 2 5 10 20

VIREO Food-172

ConSE(1) (Norouzi et al. 2013) 0 2.4 6.1 11.9 14.3 14.4 16.8 20.5 26.3 28.7
ConSE(2) (Norouzi et al. 2013) 0 1.6 5.7 9.6 13.5 14.5 16.0 20.1 24.0 27.9
ConSE(5) (Norouzi et al. 2013) 0 0.5 2.3 4.8 8.9 15.3 15.7 17.5 20.0 24.1

COSTA (Mensink, Gavves, and Snoek 2014) 0 0 0 1.3 2.7 13.9 15.7 19.4 23.7 30.3
Fast0Tag (Zhang, Gong, and Shah 2016) 0 1.8 5.8 11.2 19.2 1.9 5.7 17.4 34.2 67.7

ML-ZSL(Lee et al. 2018) 14.0 22.4 31.5 38.8 43.7 22.3 26.7 40.1 45.6 58.1
GCNZ (Wang, Ye, and Gupta 2018) 8.0 12.3 17.5 23.1 28.8 11.0 17.8 24.3 30.3 37.3

mRGCN (Our) 23.5 28.5 37.7 43.6 48.8 24.2 30.8 43.1 47.4 60.6

UEC Food-100

ConSE(1) (Norouzi et al. 2013) 0 2.8 2.9 3.0 8.1 11.5 14.2 14.4 14.5 19.6
ConSE(2) (Norouzi et al. 2013) 0 0 0.9 3.7 5.8 11.2 11.2 12.1 14.9 17.1
ConSE(5) (Norouzi et al. 2013) 0 0 0.4 2.3 7.3 11.5 11.5 11.9 13.9 18.9

COSTA (Mensink, Gavves, and Snoek 2014) 1.3 2.6 2.6 15.9 16.0 1.5 3.3 11.1 20.2 38.5
Fast0Tag (Zhang, Gong, and Shah 2016) 0 1.3 4.0 9.4 16.7 0 1.7 9.0 23.2 43.7

ML-ZSL (Lee et al. 2018) 7.3 11.2 14.5 19.8 28.1 13.4 15.7 18.2 21.5 35.9
GCNZ (Wang, Ye, and Gupta 2018) 3.1 5.0 5.7 16.5 21.7 3.1 5.0 12.3 19.4 26.0

mRGCN (Our) 17.0 20.3 22.4 22.4 36.7 17.9 21.7 22.5 24.3 42.0

Table 4: Effect of different backbone models to zero-shot
ingredient recognition on Vireo Food-172 dataset.

Backbone model Hit@k (%)
1 2 5 10 20

VGG-16 20.1 25.4 34.5 43.2 52.8
ResNet-50 24.2 30.8 43.1 47.4 60.6

Discussion Note that it has been recently demonstrated
that BERT (Devlin et al. 2018) learns better word representa-
tion than traditional methods such as GloVe and Word2Vec.
However, the superior performance of BERT comes from
the ability of learning contextualized word embeddings that
depend on the contexts where the word appears in. Hence,
the embeddings for the same word will be different in dif-
ferent sentences. Nevertheless, in our problem, we need an
unify word embedding for each word as the input of GCN.
Therefore, we can only take a word’s average BERT embed-
dings over its multiple appearances in the recipe contexts.
By averaging contextualized word embeddings, we found
this achieves much worse results than the static word em-
bedding learned by Word2Vec.

We also investigate the effects of different backbone net-
works by comparing the performance of zero-shot recog-
nition between VGG-16 (Simonyan and Zisserman 2014)
and ResNet-50 (He et al. 2016) on Vireo Food-172 dataset.
Table 4 summarizes the results when testing on unseen
classes. Basically, compared to VGG-16, using ResNet-50
as the backbone network achieves better performance. This
is mainly because that the features learned from ResNet-50
are better than the features learned from VGG-16.

Conclusion
We have presented the multi-relational graph convolu-
tional network (mRGCN) that leverages ingredient hier-
archy, ingredient co-occurrence as well as ingredient at-
tribute for zero-shot ingredient recognition. Particularly, we
studied different ways of coupling all these three relations

in mRGCN, including summing, concatenating, and atten-
tion based integration methods. Experimental results on
two datasets basically confirm the merit of using multi-
ple relations for zero-shot ingredient recognition. Moreover,
we have demonstrated attention mechanism is effective in
modeling the interaction among different relations during
the graph propagation process and enables better zero-shot
recognition performance.
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