

### **Course Concept Extraction in MOOCs via Embedding-Based Graph Propagation**

**Reporter: Liangming PAN** 

Authors: Liangming PAN, Xiaochen WANG, Chengjiang LI, Juanzi LI and Jie TANG Knowledge Engineering Group Tsinghua University

2017-11-28





Backgrounds

**Related Works** 

**Methods** 

**Experiments and Analysis** 



### MOOCs



**Massive open online courses (MOOCs)** have become increasingly popular and offered students around the world the opportunity to take online courses from prestigious universities.





### Course Concept



**Course concepts** refer to the *knowledge concepts* taught in the course, and the *related topics* that help students better understand course videos.

You might learn how to write a **bubble sort** and learn why a **bubble sort** is not as good as a **heapsort**. Next, we are going to talk about the **quick sort** algorithm. **Quicksort** is an algorithm invented in the 1960s by doctor Tony Hoare. It is also called the **partition exchange sort**, and is a typical algorithm based on **divide-and-conquer**.

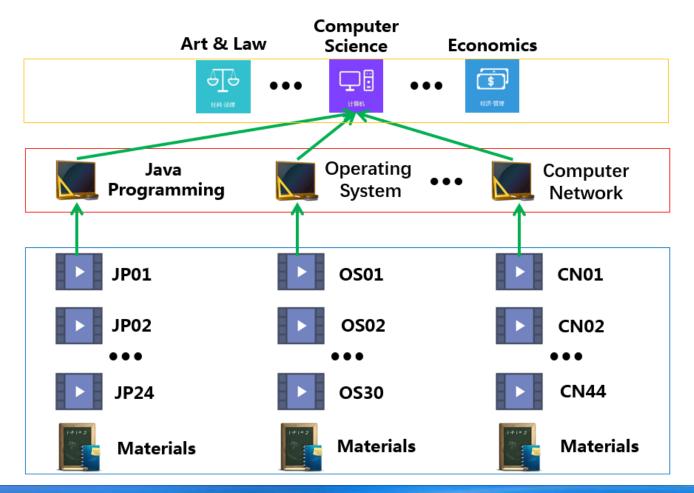
Now we have the first version of **Q** sort. After we make an analysis on its performance, performance, we will find that **quicksort** is an **unstable sorting algorithm**. Fortunately, the **quick sort** has an average **time complexity** of n log n, and in most cases, it can achieve its optimal performance. We first estimate its performance under **independent uniform distribution**.



### Why Course Concept Extraction?



#### **Video-based Structure**



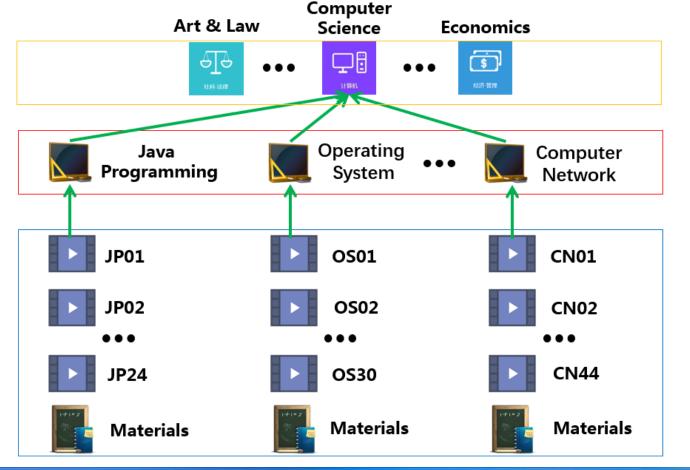


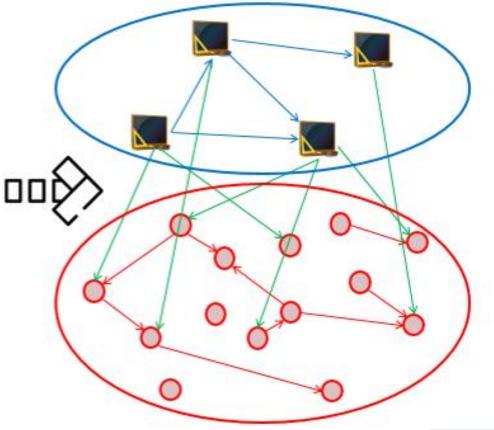
### Why Course Concept Extraction?



#### **Video-based Structure**

### **Concept-based Structure**



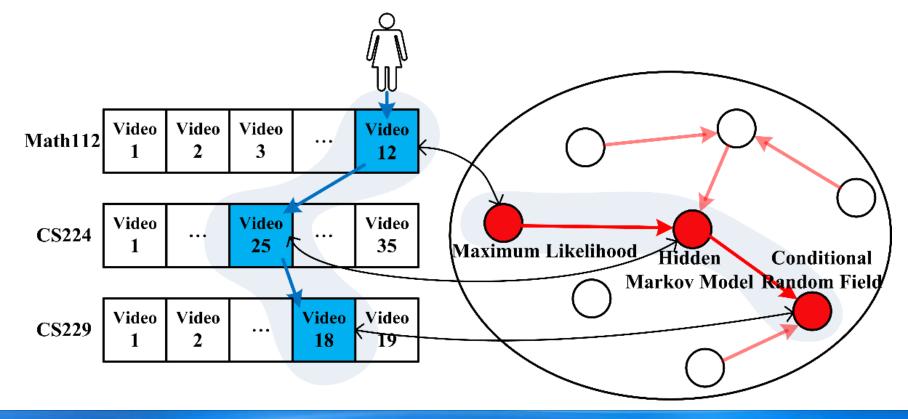




### Why Course Concept Extraction?



- Motivation 1. Manually extracting course concepts in MOOCs is infeasible
- **Motivation 2**. A concept map can help improve the learning experience of students







Backgrounds

**Related Works** 

**Methods** 

**Experiments and Analysis** 



### Related Works: Keyphrase Extraction



| Category             | Method                                         | Authors                | Year               |
|----------------------|------------------------------------------------|------------------------|--------------------|
| Supervised Learning  | Naive Bayes                                    | Eibe Frank et al.      | IJCAI 1999         |
|                      | Decision Tree                                  | Peter D. Turney et al. | Journal of IR 2000 |
|                      | Maximum Entropy                                | Wentau Yih et al.      | WWW 2006           |
|                      | SVM                                            | Patrice Lopez et al.   | 2010               |
|                      | TextRank                                       | Mihalcea R and Tarau P | EMNLP 2004         |
| Graph-based Methods  | ExpandRank                                     | Wan et al.             | AAAI 2008          |
|                      | Topical PageRank                               | Liu et al.             | EMNLP 2010         |
|                      | Combining                                      | Zha et al.             | SIGIR 2002         |
| Joint Learning-based | Text Summarization and<br>Keyphrase Extraction | Wan et al.             | ACL 2007           |



### Why Course Concept Extraction Hard?



**Low-frequency problem:** Course video captions often contain many course concepts with *low frequency*, primarily for three reasons:

- Course video captions are relatively *short documents*
- Many infrequent course concepts are from *other prerequisite or related courses*.
- A disambiguated course concept tends to be *expressed in various ways*, which produces many scattered infrequent terms.

You might learn how to write a **bubble sort** and learn why a **bubble sort** is not as good as a **heapsort**. Next, we are going to talk about the **quick sort** algorithm. **Quicksort** is an algorithm invented in the 1960s by doctor Tony Hoare. It is also called the **partition exchange sort**, and is a typical algorithm based on **divide-and-conquer**.

Now we have the first version of **Q sort**. After we make an analysis on its performance, we will find that **quicksort** is an **unstable sorting algorithm**. Fortunately, the **quick sort** has an average **time complexity** of n log n, and in most cases, it can achieve its optimal performance. We first estimate its performance under **independent uniform distribution**.





A course concept has the following *three* properties:

#### Phraseness

• A course concept should be a semantically and syntactically correct phrase.

### Informativeness

• A course concept should represent a specific scientific or technical concept.

### • Relatedness

• A course concept should be related to a course.

The above properties are hard to be captured by *local statistical information* because of the *Low-frequency problem*.





Backgrounds

**Related Works** 

### **Methods**

**Experiments and Analysis** 



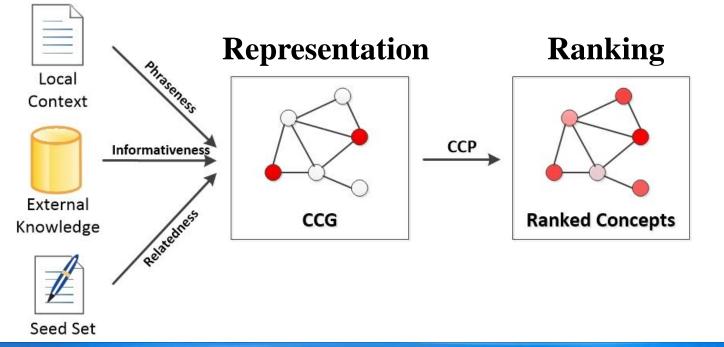
### Method Overview



**1. Candidate Extraction:** Extracting *noun phrases* within K-grams from course video captions based on *linguistic patterns*.

**2. Representation:** Incorporating *external knowledge* from online encyclopedia to learn *semantic representations* for candidate course concepts.

**3.** Ranking: Ranking candidate course concepts based on the representation.





### Representation



• Phraseness Measurement: PMI-based method

2-grams 
$$Ph(w_1, w_2) = \frac{2 \times freq(w_1, w_2)}{freq(w_1) + freq(w_2)}$$
 (1)  
N-grams (N>2)  $Ph(t) = max\{Ph(f_i, b_i) \mid i = 1, \cdots, N-1\}$  (2)  
(2)

Averaging  $ph(c) = \alpha \cdot F[ph^{D}(c)] + (1 - \alpha) \cdot F[ph^{E}(c)]$  (3)



### Representation



#### Semantic Relatedness



Candidate Course Concepts



Wikipedia Corpus

- Entity Annotation
  - Labeling all entities in Wikipedia Corpus
- Word Embeddings
  - Training Word Embeddings in Wikipedia
- Concept Representation
  - **Obtaining the vector** for each candidate
- Semantic Relatedness
  - Calculating SR by cosine distance

$$SR\left(a,b
ight)=rac{1}{2}igg(1+rac{v_{a}\cdot v_{b}}{\leftert v_{a}ert\cdotert v_{b}ertigg)}igg)$$



Semantic Relatedness



### Course Concept Graph Construction (CCG)



The course concept graph (CCG) of a course is a weighted undirected fullyconnected graph denoted as G = (V,E).

- V is the vertex set: Each vertex in V represents a candidate course concept, associated with a phraseness score.
- E is the **edge set**: For an edge  $(c_i, c_j) \in E$ , its edge weight  $e(c_i, c_j) = SR(c_i, c_j)$  $SR(c_i, c_j)$  indicates the **semantic relatedness** between  $c_i$ and  $c_j$ , i.e., the likeness of their semantic meaning.
- **Pruning**: An edge  $(c_i, c_j)$  exists in a CCG only if  $SR(c_i, c_j) > \theta$ .

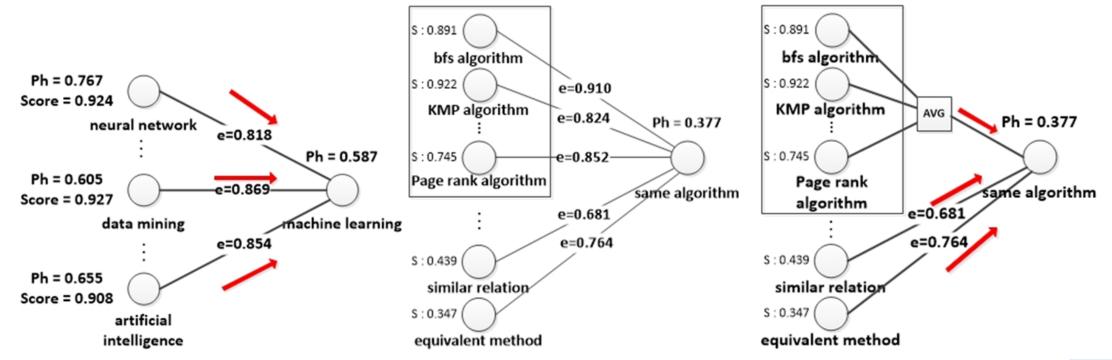


# Ranking



**Assumption:** In CCG, a course concept is likely to connect with other course concepts with high semantic relatedness

**General Idea:** Based on a small *seed set* to find more course concepts in CCG using a *graph-based propagation algorithm*.









#### **Propagation Process:**

$$conf^{k+1}(c_i) = \frac{1}{Z} \left( \frac{\sum_{c_j \in A(c_i)} vs^k(c_j, c_i)}{|A(c_i)|} \right)$$

**Voting Score:** It determines how much score should a vertex receives from another vertex in each iteration.

$$vs^{k}(c_{j}, c_{i}) = ph(c_{j}) \cdot e(c_{i}, c_{j}) \cdot conf^{k}(c_{j})$$

**Generalized Voting Score:**  $opf(c_i, c_j) = \lambda$  if  $c_i$  and  $c_j$  are overlapping.

$$gvs^{k}(c_{j}, c_{i}) = opf(c_{i}, c_{j}) \cdot ph(c_{j}) \cdot e(c_{i}, c_{j}) \cdot conf^{k}(c_{j})$$





Backgrounds

**Related Works** 

**Methods** 

**Experiments and Analysis** 







#### **Datasets**

| Dataset | Domain            | Language | #courses | #videos | #tokens   | #candidates | #labeled | correlation |
|---------|-------------------|----------|----------|---------|-----------|-------------|----------|-------------|
| CSEN    | Computer Science  | English  | 8        | 690     | 1,242,156 | 59,050      | 4,096    | 0.734       |
| EcoEN   | Economics         | English  | 5        | 381     | 401,192   | 27,571      | 3,652    | 0.696       |
| CSZH    | Computer Science  | Chinese  | 18       | 2,849   | 2,291,258 | 79,009      | 5,309    | 0.721       |
| EcoZH   | <b>E</b> conomics | Chinese  | 8        | 455     | 645,016   | 60,566      | 3,663    | 0.646       |

### **Metrics**

- R-precision
- MAP (Mean Average Precision)

### **Baselines**

- Statistical-based Methods (TF-IDF, PMI)
- **Graph-based Methods** (TextRank , Topical PageRank )







### **Experimental Results**

| • | Our method outperforms all |
|---|----------------------------|
|   | baselines on all datasets  |

- TF-IDF & TextRank perform worse than TPR and CCP
- **TPR** performs better than TextRank across all datasets

| Method   |       | CSEN  | EcoEN | CSZH  | EcoZH |
|----------|-------|-------|-------|-------|-------|
| TF-IDF   | $R_p$ | 0.125 | 0.303 | 0.118 | 0.198 |
|          | MAP   | 0.105 | 0.232 | 0.109 | 0.145 |
| PMI      | $R_p$ | 0.239 | 0.222 | 0.246 | 0.179 |
|          | MAP   | 0.141 | 0.197 | 0.187 | 0.121 |
| TextRank | $R_p$ | 0.151 | 0.290 | 0.142 | 0.161 |
|          | ` MAP | 0.137 | 0.263 | 0.131 | 0.115 |
| TPR      | $R_p$ | 0.284 | 0.414 | 0.305 | 0.303 |
|          | MAP   | 0.255 | 0.387 | 0.267 | 0.288 |
| ССР      | $R_p$ | 0.443 | 0.427 | 0.434 | 0.435 |
|          | MAP   | 0.432 | 0.365 | 0.416 | 0.423 |





Backgrounds

**Related Works** 

**Methods** 

**Experiments and Analysis** 







Conclusion

• Automatically discovering course concepts in MOOCs

**Future Directions** 

- Research on automatically course concept map generation
- Try deep learning models for course concept extraction
- Incorporating dynamic information in MOOCs (e.g., user behavior, forums, QA between students and teachers).





# Thanks!

Liangming Pan KEG, THU peterpan10211020@163.com

